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Abstract 
In this paper, we report on an agent-based model with a 
coupled hydro-agricultural model that simulates the 
collective decision making of typical landowners in the 
Odra River catchment under fluctuating socio-
environmental boundary conditions. We start out from case 
evidence. Farmers in the Odra region of Poland are caught 
in a social dilemma: While, in principle, the existing land 
reclamation system (LRS) of ditches and canals can absorb 
the negative effects of extreme weather conditions, its 
proper functioning requires collective action as regards 
maintenance. However, such a collective effort is 
undermined by the asymmetrical nature of the dependency 
of farmers resulting from the different locations of their land 
parcels along the LRS. In the model farmers decide whether 
to maintain their local section of the LRS or not based on 
their economic success and the social support they receive 
from acquaintances. Simulation results indicate that the 
frequency of LRS strategy changes - an indicator for overall 
volatility - is reduced with the introduction of social 
influence and that further social pressure leads to a positive 
lock-in that even prevents free-riding behaviour. 
 
Keywords: Collective Action, Informal Institutions, Social 
Networks, Volatility, Water Use, Opinion Dynamics 

Introduction  
The purpose of the CAVES (Complexity, Agents, 
Volatility, Evidence, and Scale) project is to understand 
complex human-environmental systems by means of 
simulations based on integrated biophysical, social and 
policy models. To achieve this aim we study key 
phenomena of complex human behaviour regarding land 
and water use in three case studies. The main focus lies on 
the influence of social networks on environmental 
behaviour. CAVES includes case studies in Great Britain, 
Poland, and South Africa to acquire data on real world 
evidence of social networks.  
The Polish case study, with input provided by the 
University of Wroclaw and the Wroclaw University of 
Technology, is concerned with issues of land use and water 
management in the Odra river region. More specifically, it 
focuses on those parts of the region that are prone to 

regular flooding due to a lack of maintenance of an old 
land reclamation system. Maintaining or re-establishing 
this land reclamation system (LRS) which consists of 
canals and ditches requires social mobilisation of the 
farmers concerned. Thus it is important that the 
acquaintance and/or friendship relationships that exist 
amongst farmers are utilised appropriately. Moreover, it is 
suspected that land reclamation, being a collective action 
(Olson 1965; Ostrom 1990), possesses the structure of a 
social dilemma (Dawes 1980). If so, existing work can be 
built upon to investigate this issue further. 
The decision making of farmers about participating in the 
maintenance of the LRS is one of the main sources of 
complexity in the Odra case when coping with water stress. 
It touches aspects of social activation under conditions of a 
more or less fluctuating (hostile) environment. In addition, 
the environment sets complex hydrological inter-farmer 
dependencies. Thus, despite the multi-facetted farmer 
decision making concerning various topics (land-use, LRS, 
high-level economic considerations like buying/selling 
land, leaving or entering farming business, etc.) we focus 
in this paper on a rather isolated examination of the socio-
environmental dynamics of farmers’ LRS decisions.  
Agent-based modelling (ABM) approaches are especially 
suitable for these kinds of domains (see e.g. Bousquet and 
Le Page 2004; Gotts, Polhill, and Law 2003) because they 
allow for a bottom-up representation of individual actor’s 
decision making based on local (subjective) perceptions of 
a common social and physical environment. The goal of 
the agent-based model presented in this paper is to test how 
different assumptions about farmers’ social and economic 
orientations drive or inhibit the installation of a working 
LRS. 
The integrated simulation model of the Odra river region 
that we present consists of two main components: The 
hydro-agricultural model provides insight into the costs 
and benefits of farming and land reclamation under certain 
climatic conditions. Complementing this, the agent-based 
model called SoNARe (Social Networks of Agents’ 
Reclamation of land) seeks to capture key aspects of the 
reasoning of the actors involved and their interactions with 
their biophysical and social environment. It is based on an 
explicit representation of social influence that is exerted 



and perceived in social networks on the one hand and the 
individual agents’ perception of economic success that is 
derived from feedback of the coupled hydro-agricultural 
model on the other hand. These two central dimensions 
(social influence, economic success) drive and determine 
the agents’ decision making as regards farming and LRS 
maintenance as well as social behaviour. 
In this paper, we first outline the set of issues that 
characterise the complex of problems encountered in the 
case study. This is followed by a detailed description of the 
model itself, in particular its agent-based core component 
(SoNARe). Subsequently, results of initial simulation runs 
for two basic scenarios are presented and discussed 
followed by a first sensitivity analysis. Besides other 
behavioural indices used in the results section, a measure 
of volatility (the amount of strategy changes by the actors) 
is identified. 

Land Reclamation in the Odra River Region 
The LRS consists of canals and ditches, that drain the soil 
directly or through a drainage pipes system, and thus the 
LRS protects a field against flooding — in the following, 
the term ‘channel’ is used for both canal and ditch. The 
LRS maintenance process mainly involves the periodic 
cleaning of canals and ditches, e.g. by removing vegetation 
and sediments from the channels’ beds. 
In principle, if viewed independently from other channel 
sections, the maintenance of the local section of the LRS 
serves to alleviate or even eliminate the negative effects of 
extreme weather conditions, especially excess water stress 
in the case of flooding, whereas neglecting LRS 
maintenance only increases these effects even more. 
However, LRS maintenance must be regarded as a 
collective task that requires social mobilisation of the 
participants, i.e. the farmers whose land parcels are located 
along a ditch or a communicating ditch system. This is 
because the difficulties concerning land and water use in 
the Odra case study region result mainly from the fact that 
the conditions encountered on individual land parcels 
depend highly on the amount of LRS maintenance 
performed on other (connected) land parcels. In wet 
periods, for example, LRS neglect leads to a loss of yield 
on neighbouring land parcels upstream since the runoff of 
excess water is blocked, whereas LRS maintenance has the 
opposite, beneficial effect since it facilitates runoff. The 
latter effect arises even if the upstream neighbours do not 
themselves maintain their section of the LRS (free riding). 
Maintenance of the land reclamation system thus enables 
to overcome environmental shocks like flooding with only 
reduced yields or even with no losses at all, but it requires 
a collective effort. The asymmetrical dependency provides 
incentives for such problematic types of behaviour as free 
riding. It is expected that this hinders and in some cases 
prohibits the installation of a functioning LRS. 
The development of a social model starts with the 
elicitation of the most important types of actors involved 
and an abstraction of their decision processes. Obviously, 

in our work the central actor type is the farmer. In the work 
presented here we had the opportunity to use transcripts of 
interviews that were conducted with farmers in the target 
region.  
When farmers are asked about their motivations 
concerning LRS maintenance, they state that they would 
either maintain the LRS if they had sufficient economic 
resources or if there was enough social support for LRS 
maintenance. The economic dimension of LRS 
maintenance is mainly determined by the achieved stability 
in attained crop yields over years with climatic extremes 
(flooding/drought) but it also includes factors like buying 
the required equipment or paying others to do the work. 
Social support towards LRS maintenance may e.g. 
originate from observing other farmers maintain their local 
LRS facilities properly and gaining protection against 
environmental fluctuations and shocks. A second source of 
social influence originates from actors actively trying to 
initiate a working LRS. Usually, these initiators are people 
from local authorities. In addition, farmers can also be 
convinced by other persons, who are socially skilled and 
rather well known (high social network integration) as well 
as respected in the local community. For instance, farmers 
mention professional advisors forming Advisory Centres. 
As an abstraction we regard all these types of leader 
personalities as ‘LRS initiators’ in that they influence 
farmers in their decision to maintain the LRS and to 
participate in the collective action. Accordingly, LRS 
initiators form the second actor type that is represented in 
the social model. 
The economic driver of farmers’ decision making relates to 
losses in crops in case of flooding or drought over a 
sequence of past years. The social dimension of farmer 
decision making is captured by modelling aspects of social 
influence between farmers. We use concepts of general 
opinion dynamics (cf. Latané 1981; Friedkin 1998). It is 
assumed that farmers are exposed to social influence 
towards or against LRS maintenance. Social influence is 
exerted through the ties of a farmer’s social network. 
Sources of social influence are either other farmers holding 
a certain view on LRS (pro/con) or an active LRS initiator 
actor asking to join in the collective action. 
Implementation details are given in the modelling section. 

Model Description 
The overall model presented here consists of two sub-
models. The SoNARe model is the main sub-model which 
this paper focuses on. SoNARe aims to capture farmer 
decision making and some of the key social characteristics 
of the Odra case in an agent-based model. The second sub-
model is a simple and abstracted hydro-agricultural model 
that reflects the main environmental characteristics of the 
target region. It provides the SoNARe agents with 
feedback about hydrological dependencies and crop yields 
under fluctuating climatic conditions in the simulated area. 



The central problem features that may be derived from the 
previous section and which the two sub-models are to 
jointly capture can be summarised as follows: 
Social network integration: The different actors are 

connected via social networks in which they propagate 
their opinion concerning LRS maintenance and perceive 
that of others. 

Actor types: To examine the collective dynamics that drive 
farmer decision making pertaining to the LRS, two actor 
types are considered, namely a prototype farmer 
(landowner) and an LRS initiator. Initiator actors are 
leader personalities with a high reputation and a high 
degree of social network integration that actively trigger 
social activation towards LRS maintenance. Farmer 
actors keep a balanced attention to their economic 
success indicated by their attained crop yields and their 
social endorsement resulting from their opinion 
regarding LRS maintenance. 

Actor decision making: The behaviour of the LRS initiator 
actors reflects their reasoning about when to trigger 
collective action. Farmers decide about partaking in LRS 
maintenance taking into account social and economic 
considerations. 

LRS maintenance: There is a functional relationship both 
locally and globally between the maintenance (or 
neglect) of the LRS and the yields on individual land 
parcels. 

Spatial dependencies: The functional relationship is mainly 
determined by upstream and downstream spatial 
dependencies of the land parcels along channels. 

Extreme weather conditions: The effects of LRS 
maintenance and their impact on yields are most crucial 
under extreme weather conditions. 

The first three problem features are covered by the 
SoNARe model that is described in detail in the next 
section. This is followed by a section that documents the 
hydro-agricultural model which deals with the other three 
problem features. 

The SoNARe Model 
Social and physical environments 
We follow a rather strict distinction between the physical 
environment and the social environment of the agents. This 
distinction focuses on a separation between physical and 
social spaces both in terms of semantics and techniques 
used for their representation. In our model the topology of 
the physical environment is reduced to a chain of land 
parcels that is located along a channel of the LRS. Each 
land parcel is managed by one agent. The agent’s location 
is given by the position of its land parcel at the channel. 
The social “location” of an agent is given by the agent’s 
position within a social network context, where an agent is 
viewed as a node and social relations are represented by 
edges. In general, agents may be considered to be 
embedded in more than one social context and thus an 
agent’s social environment may consist of more than one 

network layer. The modelled agents’ perceptions vary 
related to their physical or social environment. Both types 
of perception are locally bounded in terms of a perceivable 
section of the surrounding physical space and in terms of 
network edges and neighbouring nodes (cf. Pujol, Flache,  
Delgado, and Sangüesa 2005). In the same way, the agents’ 
repertoires of actions differ relating to their respective 
environment. 
In the model version presented in this paper, the actions 
related to the natural or physical environment have been 
reduced to the farmer agents’ binary decision of locally 
maintaining the LRS or not. Feedback from the simulated 
environment is perceived in the form of a farmer’s attained 
yield over a number of years. The farmer agent keeps a 
record of a stylised economic balance that reflects the 
varying yields. 
The agents’ social environment is modelled as networks. 
An agent may be seen as a node in different social network 
contexts. Technically, an agent has slots that are nodes 
representing potential or actual social roles in different 
networks, so the networks actually reside in the agents’ 
memory (cf. Ernst, Krebs, and Zehnpfund 2007, for an 
example model using two social network layers). We 
assume a scale-free topology since this is supported by 
Odra case study narrative storylines as well as many other 
studies on social networks (cf. Barabási 2002; Newman 
2003).  
Unlike in other network modelling approaches, agents do 
actively perceive their social environment and are enabled 
to act in their social network. We investigate the exertion 
and perception of social influence as ways of “acting in” 
and “perceiving” a given social environment. We use a 
one-layer and static social network that serves as the 
infrastructure for perceiving and exerting social influence. 
The two agent types represented in the current version of 
the SoNARe model differ distinctly in the ways they are 
embedded in their social and physical environments. The 
farmer agents and the LRS initiator agent are embedded in 
a common acquaintances network. The evidence that an 
initiator has a high degree of social network integration is 
covered by the fact that the corresponding agent is linked 
to all farmer agents (in a star-like manner) whereas farmer 
agents possess direct social links only to a fraction of other 
farmer agents (but these links can span a number of 
hydrologically independent channels). The Odra case study 
suggests that most LRS initiators are not farmers 
themselves, but village mayors or external advisors. 
Therefore, in the model LRS initiator agents do not interact 
with the simulated physical environment whereas farmer 
agents continuously interact with the simulated 
environment by performing local LRS maintenance and by 
obtaining feedback about attained crop yields. 
Perceptions of social support and economic success 
The economic success (economicSuccess) farmers perceive 
is determined by several factors: First of all, each year a 
farmer agent appraises its current yield as either “good” or 
”bad” with respect to a fixed yield perception threshold. 
Accordingly, it then stores either a positive value (“good”) 



or a negative value (“bad”) in its yield memory. The 
capacity of the memory is fixed for one agent but it varies 
across agents. Appraisal is symmetrical in the sense that 
the value for a “good year” and the value for a “bad year” 
cancel each other out exactly. To calculate the agent’s 
current perception of economic success we sum up all the 
stored values in yield memory and normalise to the 
codomain [0,1] such that values below 0.5 represent 
“negative economic success“ while values equal to or 
above 0.5 reflect “positive economic success“. 
The scale-free network which forms the infrastructure by 
which agents exerted and perceive social support is 
generated by an algorithm described by Ebel, Davidsen, 
and Bornholdt (2002). This algorithm allows generating a 
sufficient proxy of a scale-free network (in the simulations 
presented here it contains 100 nodes and an average node 
degree of 10). As pointed out before the LRS initiator is 
added to this network and linked directly to all farmers. 
The perception of social support (socialSupport) is a 
function of the agreement/disagreement between farmer 
and acquaintance concerning LRS maintenance. An agent 
receives a signal of support from each acquaintance that 
shares its strategy in that year, whereas it receives a 
pressure signal from each agent that uses the opposite 
strategy. Signals of support or pressure may also originate 
from an active LRS initiator. The exertion of social 
influence is strictly symmetrical in the sense that a signal 
of support and a pressure signal sent by the same farmer 
agent are identical in magnitude. Again, the final indicator 
of an agent’s perceived social support is calculated as a 
normalised sum of all social influences such that values 
below 0.5 represent “negative social support“ while values 
equal to or above 0.5 reflect “positive social support“. 
Decision making 
The LRS initiator agent being embedded in the social 
acquaintance network partakes in the general opinion 
dynamics as regards LRS maintenance only in that it exerts 
social support, the magnitude of which being defined in 
relation to that of farmer agents. It is assumed that the LRS 
initiator possesses information about the economic success 
of its acquaintances, i.e. the direct network neighbours in 
the social network. An LRS initiator agent decides to exert 
its social influence in favour of LRS maintenance 
whenever it perceives a minimum number of farmers who 
have big losses; i.e. farmers whose individual economic 
success is below 0.5. The LRS initiator does not exert any 
influence otherwise. 
When modelling the decision making of the farmers the 
individual balance between economic and social 
considerations has to be reflected. We implement this 
balancing based on the above introduced perceptions of 
economic success and social support by adding a parameter 
that reflects the (socio-economic) decision bias that a 
farmer has. The decisionBias of a farmer is represented as 
a value in the range of [0,1] where values above 0.5 stress 
the economic influence on decision making, values below 
0.5 stress the social dimension. Since the two perceptions 
are normalised, the combined decision criterion of a farmer 

agent is calculated as a weighted sum in which 
economicSuccess is weighted with decisionBias and 
socialSupport is weighted with (1-decisionBias). 
The final decision making is based on the weighted sum 
and abstracted in the form of a Win-Stay, Lose-Shift 
strategy (Nowak and Sigmund 1993), i.e. a farmer agent 
keeps to its previous behaviour (maintaining or not 
maintaining the LRS) if the calculated decision criterion is 
sufficiently high (>0.5) otherwise the farmer agent shifts to 
the opposite behaviour. 

The Simple Hydro-Agricultural Model 
The Simple Hydro-Agricultural Model (SHAM) is a quasi 
two-dimensional abstraction of the environmental situation 
typical for the Odra region. It reflects the hydrological 
dependencies between neighbouring land parcels and 
simulates the effects of different weather conditions, LRS 
maintenance and LRS neglect and the crop yields of 
individual land parcels along a channel. The model 
assumes a specified number of parcels located on a terrain 
of small and homogeneous slope, along a homogeneous 
channel, that runs through the centre of every parcel. Each 
parcel has the same area. At the end of every simulation 
year, the model calculates stylised yields from every 
parcel. A farmer agent that operates on a given parcel can 
perform LRS maintenance i.e. cleaning the segment of the 
channel located on its parcel, or neglect the LRS. Yields 
depend on the average water level in a given parcel; 
extreme water levels reduce the attained yield. Because the 
model handles some spatial effects, like water lifting due to 
a clogged segment of the channel, the yields are affected 
not only by phenomena taking place on a single parcel, but 
also by those which happen in the surroundings. 
The general dynamics of the model are as follows. For 
normal weather conditions SHAM shows a negligible 
impact of the LRS condition on the crop yield. In wet years 
LRS maintenance generally increases the crop yield with a 
higher effect upstream. Also, when large sections of the 
channel are well maintained downstream farmers 
experience a loss in yield because all excess water from the 
upstream parcels is drained through their parcels. 
Moreover, downstream farmers obtain a degree of implicit 
flood protection form upstream farmers not maintaining 
their LRS. 

Simulation results 
All simulations are initialised with rows of ten land parcels 
that are located along one channel. It is assumed that each 
land parcel is owned and managed by exactly one farmer 
and that each farmer owns and manages exactly one land 
parcel. All farmer agents appraise their crop yield as 
“good” or “bad” with respect to a yield threshold of 9. The 
agents’ yield memory capacity, however, is heterogeneous; 
it is randomly assigned between 3 and 7 years. A farmer 
agent’s memory capacity remains fixed over the whole 
simulation run and is identical for all presented scenarios. 



We simulate 100 farmers located along 10 hydrologically 
independent channels, i.e. it is assumed that hydrological 
interrelations only exist within one channel but not among 
individual channels.  
Farmer agents and LRS initiator are embedded in a 
common social network. Farmer agents continuously exert 
social influence over their network edges with a level of 1 
per outgoing edge. In the simulations shown here we 
assume one initiator agent that becomes active if at least 3 
farmers have big losses, i.e. economicSuccess being 
negative, and accordingly it becomes passive again if less 
than 3 farmers have big losses. The LRS initiator agent 
possesses social network ties to all farmer agents and when 
active, it exerts social influence in favour of LRS 
maintenance with its influence level set to 3. 
All scenarios start off with no LRS maintainers and the 
same distribution of memory capacities. Furthermore, the 
same weather sequence is used throughout: Two years with 
normal weather conditions are followed by one year of wet 
weather. This pattern is then repeated for the whole run. 
Due to the model’s level of abstraction, it has to be stated 
that the simulation results shown here do not claim to be 
exact predictions or forecasts of future developments. E.g. 
when results are discussed in terms of years until a certain 
process has finished, this should be interpreted as being in 
reference to an abstract time span of “model” years. 
Nevertheless, scenarios may be compared with respect to 
differences in temporal dynamics. 

Scenario 1 – The influence of economic success  
In this scenario farmer agents base their decisions 
exclusively on their perceived economic success. 
Accordingly, the decision bias parameter is set to 1 so that 
social considerations do not influence farmers’ decisions. 
Thus, the LRS initiator does not have any influence on the 
decision making. Even though in this scenario farmers’ 
decisions are driven solely by the subjective perception of 
their respective economic farming success, farmers’ 
decisions may well affect other farmers’ economic success 
(due to the hydrological dependencies) and feed back to 
the decision dynamics. 
Figure 1 shows the development of LRS strategy 
adjustments over time, i.e. the proportion of farmers who 
change their opinion about LRS maintenance in either 
direction. This volatility indicator increases for 7 years of 
simulation time and then gradually falls back almost to 
zero. Figure 2 depicts the corresponding convergence of 
the number of LRS maintainers to nearly 80% after about 
30 years.  
The fact that the volatility indicator does not fall back to 
zero (see years 35-40) was further investigated. For that 
purpose 100 independent simulation runs over 80 (instead 
of 40) years were conducted. The results confirmed the 
perception that (in the given scenario) the fraction of LRS 
maintainers stabilises at approximately 80% with 1% to 
6% of agents continuously adjusting their LRS strategy. It 
seems that this small fraction of farmer agents has a 
perceived economic success very close to the decision 

threshold of 0.5. Therefore these agents frequently switch 
their opinion about LRS while the vast majority of agents 
stop adjusting their strategy after 30 to 40 years. 

 
Fig. 1. Strategy changes over time as an indicator for volatility. 
Each dot marks the proportion of farmers who have switched 
their LRS strategy in one year (40 years in total). Note that the 
change can be either way, i.e. in favour of or against LRS 
maintenance. 
 

 
Fig. 2. Proportion of LRS maintaining farmers over time. 
 

 
Fig. 3. Average yields of farmers bounded by the mean deviation 
and the rolling mean over three consecutive years. The dotted line 
indicates the yield threshold. 
 



Figure 3 shows an increase in the average of farmers’ crop 
yields. Notice that the wet years are reflected in the regular 
pattern of low yields. Furthermore, the mean deviation of 
crop yields in years of flooding decreases from 
(approximately) 2 to 1. Similar observations can be made 
for normal years. 
As may be seen in Figure 4, the perceived economic 
success of LRS maintainers increases substantially and 
then settles on a slightly higher level than the 
corresponding values for non-maintainers. 
Scenario 1 illustrates the temporal dynamics of farmer 
decision making given that farmers appraise their 
economic success and change their opinion about LRS 
accordingly. After a phase of volatility, a big majority of 
farmers starts to continuously maintain the LRS. However, 
the economic incentive (alone) is not sufficient to mobilise 
all farmers. Instead a minority of approximately 20% 
shows free-riding behaviour: For the free-riders the 
perceived economic success does not drop far enough to 
make them change their mind because they benefit from 
the LRS activity of their neighbours. 
 

 
Fig. 4. Mean perceived economic success of maintainers and non-
maintainers over time with the yield threshold set to 9.0, a 
decision bias of 1.0 and a mean yield memory capacity of 5 years 
with radius 2. The perceived economic success is normalised to 
the interval [0, 1]. 

Scenario 2 – The combined influence of economic 
success and social support 
In the second scenario, farmer agents use both their past 
economic success and the social influence of other agents 
as a basis for their decision making. We assume that all 
farmers balance economics and social support equally, i. e. 
the decision bias is set to 0.5 (neutral) for all agents. The 
LRS initiator agent has a social influence level of 3 (i.e. it 
is three times as influential as a farmer agent). The scale-
free acquaintances network used in the simulation 
comprises 100 nodes with an average node degree of 10. 
As the simulation starts out with no LRS maintainers, the 
general opinion dynamics between farmers initially 
generate perceptions of high social support for LRS 
neglect. Since in addition the initiator agent’s activity now 

influences the decision making of the farmer agents, 
opinions are slowly pushed towards LRS maintenance. Just 
as in the previous scenario, Figure 5 shows the proportion 
of farmers who change their opinion about LRS 
maintenance as an indicator of the system’s volatility. 
Figure 6 shows the corresponding convergence of the 
number of LRS maintainers to a stable state of 100% after 
26 years. Around year 15 the barrier of 50% LRS 
maintainers is breached which triggers an avalanche pro 
LRS. 

 
Fig. 5. Strategy changes over time as an indicator for volatility. 
Each dot marks the proportion of farmers who have switched 
their LRS strategy in one year. Note that the change can be either 
way, i.e. in favour of or against LRS maintenance. 

 
Fig. 6. Proportion of LRS maintaining farmers over time. 
 
Figure 8 contrasts the development of economic success 
and social support over time showing average values over 
the 100 agents. The perceived economic success starts off 
with unrealistically high values because the agents’ yield 
memories are initialised with 5 (± 2) “good” years. The 
value falls as soon as agents experience the first years of 
the simulated weather sequence. When the shift in LRS 
strategies starts (see years 3 and 4) the average social 
support indicator falls steeply from around 86% to below 
63%. These low values of social support persist throughout 
the phase of high volatility. As more and more agents 
switch to LRS maintenance social support rises again until 
year 26 when the LRS initiator becomes passive (see 
Figure 8). In parallel to the social support the perceived 



economic success rises continuously. It has to be noted that 
with 100% LRS maintainers (and thus complete consensus 
on LRS maintenance) mean social support stabilises only 
at a level of 0.86. This is due to the normalisation of the 
farmers’ social support perception which maps the 
maximum perceivable social support to 1.0 including 
possible influence exerted by the LRS initiator. 
Accordingly, the perceived social support drops below 1.0 
when the initiator becomes passive.  

 
Fig. 7. Average yields of farmers over three years bounded by the 
mean deviation and the rolling mean. 
 
Figure 7 shows the resulting increase in the average of 
farmers’ crop yields. Again, compared to the previous 
scenarios average crop yields increase and the deviation 
between farmers decreases. 

 
Fig. 8. Mean perceived economic success and mean perceived 
social support over time. 
 
In scenario 2 it is assumed that in addition to appraising 
their economic success farmers also include the perceived 
social influence in their decision process. Once the LRS 
initiator gets active it continuously pushes the opinion 
making process towards LRS maintenance. Figure 8 
clearly shows that in the first phase of the volatile period 
(until year 17), economic factors dominate decision 
making, whereas in the second phase the perceived social 
support becomes the main driver. It seems to be this 
second phase of the decision dynamics that mobilises 

possible free-riders, such as those observed in scenario 1, 
to partake in the collective action. 

Sensitivity Analysis 
This section reports on a first sensitivity analysis of the 
model. For this purpose we varied the parameter 
decisionBias from 0 to 1 with a step size of 0.025 and 
varied the relative social influence of the LRS initiator 
from 0 to 7 with a step size of 0.25. Note that in scenario 1 
decisionBias was set to 1.0 and in scenario 2 this parameter 
was set to 0.5 and relative social influence of the LRS 
initiator was set to 3.0. All other parameters remain fixed 
as in scenarios 1 and 2. In the following figures the 
minimum values are coloured in black, maximum values 
are coloured in white and the values in between are 
represented by shades of grey from black to white. 

 
Fig. 9. Final fraction of LRS maintainers after 40 years.  
 
Figure 9 shows the proportion of maintainers after 40 years 
of simulation. The right hand side of the diagram with 
decisionBias above 0.85 confirms the observation made in 
scenario 1 that with a high economic orientation roughly 
80% of the farmers contribute to the collective action. With 
a lower decision bias 100% of the farmer agents get 
mobilised if the social influence level of the LRS initiator 
is high enough. The lower left region of the diagram shows 
that with a higher social orientation (i.e. a lower 
decisionBias) farmer agents keep to their initially passive 
behaviour and never maintain the LRS unless high 
influence levels of the LRS initiator are assumed. A highly 
influential initiator is required to break up the social 
coherence of the initially passive population of farmers. 
Figure 10 displays the mean volatility of the opinion 
dynamics over 40 simulation years. Most interesting is the 
marked region of relatively high volatility which is 
between 20% and 23%. When compared to the same 

80%

100% 

0%



region in figure 9 it seems that this phase of high volatility 
is associated with a transition between 100% mobilisation 
and close to 0% in the relevant parameter range.  

 
Fig. 10. Mean volatility in the opinion dynamics after 40 years.  

Discussion 
The presented integrated model comprises an abstract 
biophysical model that reflects the main hydro-agricultural 
properties typically found in the Odra river case study area 
and a coupled agent-based model. The SoNARe agent-
based model simulates the collective decision making of 
typical landowners in the target area under the fluctuating 
boundary conditions set by the biophysical model. 
Landowner decision dynamics are represented by actor 
types, stylised behavioural rules and well-founded 
psychological assumptions about social influence, memory 
capacity and social networks. While the model is being 
tested with only a small number of actors, it is easily 
scalable to several hundreds of actors without losing the 
basic environmental or social structure. 
The presented scenario runs are extreme: The first scenario 
suggests that under the assumption of selfish farmers who 
only consider their individual farming success roughly a 
fifth of the farmers shows free-riding behaviour. This 
points in the direction of a social dilemma induced by the 
hydrological interdependencies of farmers’ land parcels. 
Scenario 2 adds social influence to the decision process 
which results in the emergence of a positive social lock-in.  
The SoNARe model produces, besides other behavioural 
indices, a measure of volatility (the amount of strategy 
changes by the actors). When comparing the development 
of the volatility indicator in scenarios 1 and 2 (see Figures 
1 and 5) one can observe that for scenario 1 the indicator 
has peaks to almost 0.4, whereas in scenario 2 the indicator 
is always well below 0.35. Moreover, in scenario 2 the 

indicator drops to zero earlier than in scenario 1. This 
might indicate that under the given circumstances the 
presence of an active social network and of mechanisms of 
social influence dampens phases of high volatility in 
opinion dynamics and instead leads to a coherence effect. 
In spite of the situation’s underlying dependency structure 
prone to free riding, a social “activity seed” together with 
some social and economic pressure on the participants is 
sufficient to trigger a social lock-in in favour of LRS 
maintenance. The intertwining of social and economic 
processes and their long-term effects will have to be 
investigated further. Still, it is safe to attribute some 
effectiveness to the modelled LRS initiator. 
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